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Summary

• A full formalisation of ORM2

• A well founded and provably correct encoding in OWL2 of a 
relevant fragment of ORM2

• A Visual Studio plugin extending NORMA with reasoning



A formalisation of ORM2

• We need a precise and complete syntax and semantics

• We have two proposals (proved to be consistent wrt the original 
Halpin’s formalisation, and equivalent among each other)

• We could build upon our formalisation

• Maybe we got something wrong, let’s fix it



A correct encoding in OWL2

• A provably correct encoding in OWL2 of a relevant fragment of 
ORM2

• All the other approaches in the literature proved to be wrong

• We can extend the expressivity of the currently captured fragment



A Visual Studio plugin

• Still at an early stage of development, but already quite cool

• Loose coupling with NORMA

• We aim at a much tighter integration with NORMA; 
we would like to discuss how with you



Demo!
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7. An object type value constraint indicating which values are allowed in Credit. Role
value constraints can be also expressed to indicate which values are allowed to the
instances playing a given role.

8. An exclusion constraint (depicted as circled ‘X’) between the roles played by Student
in the relations worksFor and collaborates, expressing the fact that no student can play
both these roles. Exclusion constraint can also span over arbitrary sequences of roles.
The combination of exclusion and inclusive-or constraints gives rise to exclusive-or
constraints meaning that each instance in the attached entity type plays exactly one

of the attached roles. Exclusion constraints, together with subset and equality, are
called set-comparison constraints.

9. A ring constraint expressing that the relation reportsTo is asymmetric.

3 ORM2 from a formal perspective

The modelling activity in ORM2 is supported by several tools that provide user friendly
graphical interfaces to build complex conceptual schema in real world application domains.
The tools perform syntactic check on the graphical notation, warning for not-admitted
combinations of basic elements and constraints, and driving the modelling activity co-
herently with the ORM2 conceptual schema design procedure [4]. Nonetheless, the ability
to avoid the definition of syntactically correct schemas that resolve to be semantically
inconsistent is currently left to expertise and skill of the modeller itself, since none of
the available design tools o↵ers automated reasoning support on specific combinations
of constraints provided by the user. It is well known that, due to design mistakes or to
over-constraining, a conceptual schema may be syntactically correct and, nonetheless, (i)
it may not admit any instantiation (i.e. the entire schema cannot be populated without
the violation of some of the constraints), or (ii) it may admit only a partial instantiation
(i.e. some entity or value types/relations, but not all of them, are forced to be empty).
Schema consistency, consistency of an object type, and the fact that some constraints may
be already present in a schema as implicit consequences, are typical properties of a con-
ceptual schema that, once checked, significantly improve the quality of the schema giving
to the modeller precise information to refining the schema by relaxing some constraints, or
removing some entity types and relations. Now, the automated verification of these prop-
erties over a schema strictly depends on the possibility to perform reasoning and make
inferences on it by means of a semantic-based logic representation of the schema itself.

With this goal in mind, this section presents a linear syntax that fully covers the set
of graphical symbols of ORM2. For each construct � in the syntax, its corresponding set-
theoretic semantics expressed in relational algebra is also introduced in table 3 (where O
denotes an object type). The signature S of the linear ORM2 syntax is made of:

– A set E of entity type symbols;
– a set V of value type symbols;
– a set R of relation symbols;
– a set A of role symbols;
– a set D of domain symbols, and
– a set ⇤ of pairwise disjoint sets of values;
– for each D 2 D, an injective extension function ⇤(·) : D ! ⇤ associating each domain

symbol D to an extension ⇤D;
– a binary relation % ✓ R ⇥ A linking role symbols to relation symbols. We take the

pair R.a as the atomic elements of the syntax, and we call it localised role. Given a
relation symbol R, %R = {R.a|R.a 2 %} is the set of localised roles with respect to R;
arity(R) = |%R| is the arity of the relation R;
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– for each relation symbol R, a bijection ⌧R : %R ! [1..|%R|] mapping each element in %R
to an element in the finite sequence of natural numbers [1..|%R|]. We also define ⌧ =S

R2R ⌧R. The mapping ⌧R guarantees a correspondence between role components and
argument positions in a relation, so that we can freely choose between an ‘attribute-
based’ and a ‘positional-based’ representation.

Now, given the signature S, an ORM2 conceptual schema ⌃ over S includes a finite
combination of the constructs in table 3. The list of constraints graphically introduced
Section2 can now be re-formulated using the new syntax, where: (1) TYPE is for linking
a role to its object type; (2) FREQ indicates the frequency occurrence applied to a role
sequence; (3) MAND is for mandatory participation; (4) R-SETH is for the family of set-
comparison constraints; (5) O-SETH is for the family of subtyping constraints; (6) O-CARD
and R-CARD indicate object and role cardinality respectively; and (7) OBJ expresses the
objectification of a relation, and associates a name to the resulting objectified type; (8)
RING is for ring constraints; and (9) V-VAL enumerate the values that are in a value type
and role, respectively.

The linear syntax does not only provide a way to fully represent the ORM2 graphical
notation but, in some respect, it represents also a genuine generalisation of it. In particular,
as the FREQ and MAND are concerned, external and internal forms of the constraints
are represented by means of di↵erent specialisations of the same constructs; the FREQ
construct can now be applied to arbitrary role sequences no matter about the arity of
relations involved, and the same holds for the R-SETH constructs. Moreover, additional
sequences of role pairs (see ./R, and ./S) are among the arguments of both FREQ and R-
SETH, and used to specify the roles where the joins must be computed. R-SETH constraints
are equipped with a function µ that fixes the mapping between the constrained roles. No
specific construct has been added to represent uniqueness constraints, since they can be
naturally viewed as frequency occurrence constraints with a fixed range of min = 1,max =
1. Moreover, several constraints that appear among the primitive symbols in ORM2, can
now be easily derived by combining (and specialising) the constructs of the linear syntax
as shown in table 3 (note that, in the case of the exclusive-or constraint, since no join
operation is needed, we simply omitted to include this information in the specification
of the R-SETExc. Note that, as in the case of the simple R-SETH constraints, the actual
version of the exclusive-or could be further generalized by the introduction of join paths
specification). In particular, the ‘strict’ version of the subtyping relation, that is assumed
as primitive in [4], is seen here as a derived constraint: Given a non-strict semantics for
the subtyping relation, the strict one can be represented by a combination of partition,
cardinality constraint, and the introduction of a a new fresh object type symbol (‘equality’
can also be expressed using a similar pattern, where the cardinality of the new introduced
symbol is zero).

Table 2 shows how the new introduced syntax can be used to encode conceptual
schemas that have been originally specified in graphical terms. Role names result from
the concatenation of ‘relation name’, ‘dot’, and ‘name of the attached type’. New fresh
su�xes are introduced whenever more than one role in a relation is attached to the same
type (e.g. see reportsTo in the example).

The semantics of a conceptual schema ⌃ is formally specified through the notion of
interpretation. Let ⌃ be an ORM2 conceptual schema over a signature S, an interpretation
for ⌃ is a triple I = h�I , (·)I , idIi, where
– �I is a set, the interpretation domain, properly including each ⇤D 2 ⇤;
– (·)I is a total function such that:

(i) For each E 2 E , EI ✓ �I \SD
j

2D ⇤D
j

;
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An interpretation I is a model of the new schema if:

1. ⇧reportsTo.subReportsTo
I \⇧supports.firstSupports

I = ? [R-SETExc]
2. AdminI ✓ ⇧reportsTo.subReportsTo

I [TYPE]
3. ICTI ✓ ⇧supports.firstSupports

I [TYPE]

Let us suppose now that the constraint O-SETIsa(ICT,Admin) is added to the schema. In
order to be a model, I must also satisfy the condition:

4. ICTI ✓ AdminI that, together with 2., implies
5. ICTI ✓ ⇧reportsTo.subReportsTo

I but then, by 3. and 4.
6. ⇧reportsTo.subReportsTo

I \⇧supports.firstSupports
I 6= ?

which contradicts our assumption 1. Therefore, O-SETIsa(ICT,Admin) causes the entity type
ICT to be inconsistent. But then, the relation supports also becomes inconsistent, and,
due to the mandatory participation, the same happens to AreaManager, to the relation
reportsTo and to the associated Admin. This simple argument proves that the schema is
partially consistent, i.e. it admits a model where everything is empty except Date.

Example 2. Again from the example 3, let us select the schema made of:
O-SETF({R&TSta↵,Student,Admin},UNI-Personnel), where F = {Ex,Tot}. Then let us add the
new entity type LazyPeople with: (i) O-SETEx({R&TSta↵,LazyPeople},UNI-Personnel) and (ii)
O-SETEx({Admin,LazyPeople},UNI-Personnel). Then, an interpretation I is a legal database
state of the schema if:

1. FI ✓ UNI-PersonnelI , where F = {Student,Admin,R&TSta↵, LazyPeople}
2. UNI-PersonellI ✓ R&TSta↵I [ AdminI [ StudentI

3. the involved entity types are pairwise disjoint, in particular:
LazyPeopleI \ R&TSta↵I = ?, and LazyPeopleI \ AdminI = ?

Now, let us consider the new constraint O-SETIsa({LazyPeople},Student). An interpretation
satisfies it if LazyPeopleI ✓ StudentI , but this is actually what the conditions 1-3 imply.
Therefore, it turns out that all the interpretations that are models of the schema are also
model of O-SETIsa({LazyPeople},Student), namely, the constraint is entailed by the schema.

4 FOL encoding of ORM2 conceptual schema

The FOL semantics for ORM2 is based on a signature SFOL that perfectly matches the one
of the linear syntax:

(i) E1, E2, . . . , En 1-ary predicates for entity types;
(ii) V1, V2, . . . , Vm 1-ary predicates for value types;
(iii) D1, D2, . . . , Dl 1-ary predicates for domain symbols;
(iv) R1, R2, . . . , Rk n-ary predicates for relations;
(v) a countable set of constants d1, d2, . . . ;
(vi) a set id2, . . . , idn

max of functions, nmax = max{|%R||R 2 R}.
The FOL encoding of the ORM2 semantics introduced in the previous section is then as
follows:

– Background domain axioms:

8x.Ei(x) ! ¬(D1(x) _ · · · _Dl(x)), for 1  i  n (1)

8x.Vi(x) ! Dj(x), for 1  i  m (2)

8x.Di(x) $ (x = d1 _ x = d2 _ . . . ), for all di 2 ⇤D
i

(3)

8x1, . . . , xn, z1, . . . , zn.id(x) = id(z) $ x = s, for n = 1, . . . , nmax (4)
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Table 5. Linear Syntax (⌅) and FOL Semantics (⇤) table.

⌅ TYPE ✓ %⇥ (E [ V)
⇤ If TYPE(R.a,O) 2 ⌃ then 8x1 . . . x

⌧(R.a) . . . xn

.R(x1, . . . , x
⌧(R.a), . . . , xn

) ! O(x
⌧(R.a))

⌅ FREQ ✓ }(%)⇥ (}(%)⇥ }(%))⇥ (N⇥ (N [ {1}))
⇤ If FREQ({R1.a11, . . . , R

1.a1n, . . . , R
k.a

k1, . . . , R
k.a

km

}, ./
R

, (min,max)) 2 ⌃ then

8y[9x1 . . . xk(
k^

j=1

Rj(xj) ^
n^

i1=1

(x1
⌧(R1

.a1i1)
= y1i1) ^ · · · ^

m^

ik=1

(x1
⌧(R1

.a1ik) = y1ik) ^
^

./R

(xr

+

⌧(Rr

+
.a

r

+v
r

)
= xr

�

⌧(Rr

�
.a

r

�w
r

)
))] !

9�min;max y[9x1 . . . xk(
k^

j=1

Rj(xj) ^
n^

i1=1

(x1
⌧(R1

.a1i1)
= y1i1) ^ · · · ^

m^

ik=1

(x1
⌧(R1

.a1ik) = y1ik) ^ (
^

./R

xr

+

⌧(Rr

+
.a

r

+v
r

)
= xr

�

⌧(Rr

�
.a

r

�w
r

)
))]

where:

(1) ./
R

= {. . . , hRi.a
iv

= Rj .a
jw

i, . . . }, with i 6= j and 1  i, j  k, is the finite set of join (role) pairs (given k relations R, | ./
R

| = k � 1)

(2) Ri.a
ix

2 %
R

i

for any Ri 2 R, and

(3) the equalities in
V

./R
are specified according to ./

R

(e.g. given x1, x2, x3 s.t. R1(x1), R2(x2), R3(x3), if ./
R

= {(R1.a, R2.b), (R2.c, R3.d)} then
V

./R
=def (x

1
⌧(R1

.a) = x2
⌧(R2

.b)) ^ (x2
⌧(R2

.c) = x3
⌧(R3

.d))

⌅ MAND ✓ }(%)⇥ (E [ V)
⇤ If MAND({R1.a11, . . . , R

1.a1n, . . . , R
k.a

k1, . . . , R
k.a

km

}, O) 2 ⌃ then

8y[A(y) !
n_

i=1

9zi(R1(zi) ^ (zi
⌧(R1

.a1i)
= y) _ · · · _

m_

j=1

9zj .Rk(zj) ^ (zj
⌧(Rk

.a

kj

)
= y))]

⌅ R-SETH ✓ (}(%)⇥ (}(%)⇥ }(%)))⇥ (}(%)⇥ (}(%)⇥ }(%)))⇥ (µ : % ! %) where H = {Sub,Exc}
⇤ • If R-SETSub(({R1.a11, . . . , R

1.a1n, . . . , R
k.a

k1, . . . , R
k.a

km

}, ./
R

), ({S1.b11, . . . , S
1.b1v, . . . , S

q.b
q1, . . . , S

q.b
qw

}, ./
S

, µ) 2 ⌃ then

8y[9x1 . . . xk(
k^

j=1

Rj(xj) ^
n^

i1=1

(x1
⌧(R1

.a1i1)
= y1i1) ^ · · · ^

m^

ik=1

(x1
⌧(R1

.a1ik) = y1ik) ^
^

./R

(xr

+

⌧(Rr

+
.a

r

+v
r

)
= xr

�

⌧(Rr

�
.a

r

�w
r

)
)) !

9z1 . . . zq(
q^

i=1

Si(zi) ^
n^

i1=1

(z
f

µ(1i1)

⌧(µ(R1
.a1i1))

= y1i1) ^ · · · ^
m^

ik=1

(z
f

µ(1ik)

⌧(µ(R1
.a1ik))

= y1ik) ^
^

./S

(zs
+

⌧(Ss

+
.b

s

+v
s

)
= zs

�

⌧(Ss

�
.b

s

�w
s

)
))]

• If R-SETExc(({R1.a11, . . . , R
1.a1n, . . . , R

k.a
k1, . . . , R

k.a
km

}, ./
R

), ({S1.b11, . . . , S
1.b1v, . . . , S

q.b
q1, . . . , S

q.b
qw

}, ./
S

, µ) 2 ⌃ then

8y[9x1 . . . xk(
k^

j=1

Rj(xj) ^
n^

i1=1

(x1
⌧(R1

.a1i1)
= y1i1) ^ · · · ^

m^

ik=1

(x1
⌧(R1

.a1ik) = y1ik) ^
^

./R

(xr

+

⌧(Rr

+
.a

r

+v
r

)
= xr

�

⌧(Rr

�
.a

r

�w
r

)
)) !

¬(9z1 . . . zq(
q^

i=1

Si(zi) ^
n^

i1=1

(z
f

µ(1i1)

⌧(µ(R1
.a1i1))

= y1i1) ^ · · · ^
m^

ik=1

(z
f

µ(1ik)

⌧(µ(R1
.a1ik))

= y1ik) ^
^

./S

(zs
+

⌧(Ss

+
.b

s

+v
s

)
= zs

�

⌧(Ss

�
.b

s

�w
s

)
)))]

where:

(1) given %CA = {R1.a11, . . . , R
1.a1n, . . . , R

k.a
k1, . . . , R

k.a
km

}, and %CB = {S1.b11, . . . , S
1.b1v, . . . , S

q.b
q1, . . . , S

q.b
qw

},
µ is a partial bijection s.t. for any h%CA , %CB , µi 2 R-SETH, we have %CA = {R.a|µ(R.a) 2 %CB}, and

(2) f
µ(xy) = z i↵ µ(Rx.a

xy

) 2 %
S

z
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The above set of background axioms is needed in order to force the interpretation of the
symbols in the FOL knowledge bases (KBs) to be correct w.r.t. the intended semantics
of the corresponding ORM2 symbols. In particular, axiom (1) forces the interpretation of
each entity type to be disjoint from the interpretation of the domain symbols; axiom (2)
says that objects in the interpretation of a value type must be also in the interpretation of
a specific domain symbol; axiom (3) forces the interpretation of a domain symbols to be
among the set of values predefined by ⇤(·), while axiom (4) captures the injective nature
of each id function and the fact that tuples of di↵erent length will never agree on the same
identifier. We also add the axioms a 6= b, for any pair of distinct constants a and b (UNA).
A FO interpretation is a model (or, a ‘legal database state’) for an ORM2plus schema if

it satisfies the background axioms and the corresponding FOL KB built as described in
tables 5 and 4. We can prove that, when the schema is restricted to a NIAM schema, the
models of the corresponding ORM2plus schema are the same as the FO models of the NIAM
schema as specified in [5].

Table 4. Linear Syntax (⌅) and FOL Semantics (⇤)

⌅ O-SETH ✓ }(E [ V)⇥ E [ V where H = {Isa,Tot,Ex}
⇤ • If O-SETIsa({O1, . . . , On

}, O) 2 ⌃ then 8y.O
i

(y) ! O(y) for all i = 1, . . . , n

• If O-SETTot({O1, . . . , On

}, O) 2 ⌃ then
(
8y.O

i

(y) ! O(y)

8y.O(y) ! O1(y) _ · · · _O
n

(y), for all i = 1, . . . , n

• If O-SETEx({O1, . . . , On

}, O) 2 ⌃ then
8
>>>>>><

>>>>>>:

8y.O1(y) ! O(y) ^ ¬O2(y) ^ · · · ^ ¬O
n

(y)

8y.O2(y) ! O(y) ^ ¬O3(y) ^ · · · ^ ¬O
n�1(y)

· · ·
8y.O

n�1(y) ! O(y) ^ ¬O1(y)

8y.O
n

(y) ! O(y)

⌅ O-CARD ✓ (E [ V)⇥ (N⇥ (N [ {1}))
⇤ If O-CARD(O) = (min,max)) 2 ⌃ then 9�miny.O(y) ^ 9maxy.O(y)

⌅ R-CARD ✓ }(%)⇥ (N⇥ (N [ {1}))
⇤ If R-CARD(R.a) = (min,max)) 2 ⌃ then

9�minx
⌧(R.a).R(x1 . . . x

⌧(R.a) . . . xn

) ^ 9maxx
⌧(R.a).R(x1 . . . x

⌧(R.a) . . . xn

)

⌅ OBJ ✓ R⇥ (E [ V)
⇤ If OBJ(R,O) 2 ⌃ then 8x.O(x) $ 9y.R(y) ^ id

|%
R

|(y) = x

⌅ RINGJ ✓ }(%⇥ %) where J = {Irr,Asym,Trans, Intr,Antisym,Acyclic, Sym,Ref}
⇤ E.g. If RINGIrr(R.a,R.b) 2 ⌃ then 8x

⌧(R.a), x⌧(R.b).R(x
⌧(R.a), x⌧(R.b)) ! ¬R(x

⌧(R.b), x⌧(R.a))

⌅ V-VAL : V ! }(⇤
D

) for some ⇤
D

2 ⇤ (where ⇤(·) associates an extension to each domain symbol)
⇤ If V-VAL(V ) = {d1, . . . , dn} 2 ⌃ then 8x.V (x) ! (x = d1) _ · · · _ (x = d

n

)

Let ⌃FOL be the FOL knowledge base over the signature SFOL resulting from the en-
coding above. Now, it is easy to see that an interpretation satisfies an ORM2 schema if
and only if it satisfies the corresponding FOL knowledge base ⌃FOL. Therefore, we have
that the following holds:
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Table 3. Linear Syntax and Semantics table.

Syntax Semantics

TYPE ✓ %⇥ (E [ V) If TYPE(R.a,O) 2 ⌃ then

⇧
R.a

RI ✓ OI

FREQ ✓ }(%)⇥ (}(%)⇥ }(%))⇥ (N⇥ (N [ {1})) If FREQ({R1.a11, . . . , R
1.a1n, . . . , R

k.a
k1, . . . , R

k.a
km

}, ./
R

, hmin,maxi) 2 ⌃ then

⇧
%

C(R1I ./
R

· · · ./
R

Rk

I
) ✓ {x|min  ]{�

x=%

C(R1I ./
R

· · · ./
R

Rk

I
)}  max}

where:

(1) %C = {R1.a11, . . . , R
1.a1n, . . . , R

k.a
k1, . . . , R

k.a
km

}, and x = %C i↵ R1.a11 = x1
⌧(R1

.a11)
, . . . , Rk.a

km

= xk

⌧(Rk

.a

km

)

(2) ./
R

= {. . . , hRi.a
iv

= Rj .a
jw

i, . . . }, with i 6= j and 1  i, j  k, is the finite set of role pairs where the joins must be computed

(e.g. given sequence of n relations, R, | ./
R

| = n� 1), and Rx.a
xy

2 %x
R

for any Rx 2 R

MAND ✓ }(%)⇥ (E [ V) If MAND({R1.a11, . . . , R
1.a1n, . . . , R

k.a
k1, . . . , R

k.a
km

}, O) 2 ⌃ then

OI ✓ ⇧
R

1
.a11

R1I [ · · · [⇧
R

1
.a1n

R1I [ · · · [⇧
R

k

.a

k1
Rk

I [ · · · [⇧
R

k

.a

km

Rk

I

R-SETH ✓ ((}(%)⇥ (}(%)⇥ }(%)))⇥ (}(%)⇥ (}(%)⇥ }(%)))⇥ (µ : % ! %) • If R-SETSub(({R1.a11, . . . , R
1.a1n, . . . , R

k.a
k1, . . . , R

k.a
km

}, ./
R

),

({S1.b11, . . . , S
1.b1v, . . . , S

q.b
q1, . . . , S

q.b
qw

}, ./
S

, µ) 2 ⌃ then

⇧
%

CA (R
1I ./

R

· · · ./
R

Rk

I
) ✓ ⇧

%

CB (S
1I ./

S

· · · ./
S

Sq

I
)

• If R-SETExc(({R1.a11, . . . , R
1.a1n, . . . , R

k.a
k1, . . . , R

k.a
km

}, ./
R

),

({S1.b11, . . . , S
1.b1v, . . . , S

q.b
q1, . . . , S

q.b
qw

}, ./
S

, µ) 2 ⌃ then

⇧
%

CA (R
1I ./

R

· · · ./
R

Rk

I
) \⇧

%

CB (S
1I ./

S

· · · ./
S

Sq

I
) = ?

where:

(1) %CA = {R1.a11, . . . , R
1.a1n, . . . , R

k.a
k1, . . . , R

k.a
km

}, and %CB = {S1.b11, . . . , S
1.b1v, . . . , S

q.b
q1, . . . , S

q.b
qw

}
(2) µ is a partial bijection s.t. for any h%CA , %CB , µi 2 R-SETH, we have %CA = {R.a|µ(R.a) 2 %CB}, and
(3) H = {Sub,Exc}

O-SETH ✓ }(E [ V)⇥ E [ V • If O-SETIsa({O1, . . . , On

}, O) 2 ⌃ then OI
i

✓ OI for 1  i  n

where H = {Isa,Tot,Ex} • If O-SETTot({O1, . . . , On

}, O) 2 ⌃ then OI ✓
S

n

i=1 O
I
i

• If O-SETEx({O1, . . . , On

}, O) 2 ⌃ then O-SETIsa({O1, . . . , On

}, O) 2 ⌃ and

OI
i

\OI
j

= ? for any 1  i < j  n

O-CARD ✓ (E [ V)⇥ (N⇥ (N [ {1})) If O-CARD(O) = (min,max) 2 ⌃ then min  ]{o | o 2 OI}  max

R-CARD ✓ }(%)⇥ (N⇥ (N [ {1})) If R-CARD(R.a) = (min,max) 2 ⌃ then min  ]{o|o 2 ⇧
R.a

RI}  max

OBJ ✓ R⇥ (E [ V) If OBJ(R,O) 2 ⌃ then id

I(RI) = OI

RINGJ ✓ }(%⇥ %) If RINGJ(R.a,R.b) 2 ⌃ then

where J = {Irr,Asym,Trans, Intr,Antisym,Acyclic, Sym,Ref} ⇧(R.a,R.b)R
I is irreflexive, asymmetric, transitive, intransitive,

antisymmetric, acyclic, symmetric, reflexive

V-VAL : V ! }(⇤
D

) for some ⇤
D

2 ⇤ If V-VAL(V ) = {vD1 , . . . , vD
n

} 2 ⌃ then V I = {vD1 , . . . , vD
n

} for some D
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5 Encoding in ALCQI

With the main aim of relying on available reasoning tools to reason in an e↵ective way
on ORM2 schemas, we present here the encoding in the logic ALCQI for which tableaux-
based reasoning algorithms with a tractable computational complexity have been devel-
oped [11]. ALCQI corresponds to the basic DL ALC equipped with qualified cardinality

restrictions and inverse roles, and it can also be viewed as a fragment of OWL2. The
di�culty implied by the absence of n-ary relations has been overcome by means of reifi-
cation: For each relation R with arity n � 2, a new atomic concept AR and n functional
roles ⌧(R.a1), . . . , ⌧(R.an) one for each component of R. Due to the tree-model property of
ALCQI, the reification process provides a sound and complete translation w.r.t. concept
satisfiability, such that each instance of the new introduced concept is a representative of
one and only one tuple of R. Given as such, the tree-model property is enough to preserve
the correctness of the ALCQI encoding, as well as of the introduced reasoning services
over ORM2. Besides reification, we also know that the expressiveness of ALCQI does
not allow to fully capture the semantics of the ORM2 constraints in table 3. In particu-
lar, ALCQI does not admit neither arbitrary set-comparison assertions on relations (only
comparison between entire role sequences, and between pairs of single roles, are allowed),
nor external uniqueness or uniqueness involving more than one role (only unary keys for
relations are allowed), nor arbitrary frequency occurrence constraints (only qualified num-

ber restrictions are allowed). The analysis of these restrictions thus led to identification of
a fragment of ORM2, called ORM2zero, that is maximal with respect to the expressiveness
of ALCQI, and still expressive enough to capture the most frequent usage patterns of the
modelling community.

Table 6. ALCQI encoding.

Background domain axioms: E
i

v ¬(D1 t · · · tD
l

) for i 2 {1, . . . , n}
V
i

v D
j

for i 2 {1, . . . ,m}, and some j with 1  j  l
D

i

v ul

j=i+1¬Dj

for i 2 {1, . . . , l}
> v A>1 t · · · tA>

n

max

> v ( 1i.>) for i 2 {1, . . . , n
max

}
8i.? v 8i+ 1.? for i 2 {1, . . . , n

max

}
A>

n

⌘ 91.A>1 u · · · u 9n.A>1 u 8n+ 1.? for n 2 {2, . . . , n
max

}
A

R

v A>
n

for each atomic relation R of arity n
A v A>1 for each atomic concept A

TYPE(R.a,O) 9⌧(R.a)�.A
R

v O

FREQ�(R.a, hmin,maxi) 9⌧(R.a)�.A
R

v � min ⌧(R.a)�.A
R

u  max ⌧(R.a)�.A
R

MAND({R1.a1, . . . , R
1.a

n

, O v 9⌧(R1.a1)
�.A

R

1 t · · · t 9⌧(R1.a
n

)�.A
R

1 t · · ·t
. . . , Rk.a1, . . . , R

k.a
m

}, O) 9⌧(Rk.a1)
�.A

R

k

t · · · t 9⌧(Rk.a
m

)�.A
R

k

(A) R-SET�
Sub(A,B) A

R

v A
S

(A)
A = {R.a1, . . . , R.a

n

}, B = {S.b1, . . . , S.b

n

}
(A) R-SET�

Exc(A,B) A
R

v A>
n

u ¬A
S

(B) R-SET�
Sub(A,B) 9⌧(R.a

i

)�.A
R

v 9⌧(S.b
j

)�.A
S

(B)
A = {R.a

i

}, B = {S.b

j

}
(B) R-SET�

Exc(A,B) 9⌧(R.a
i

)�.A
R

v A>
n

u ¬9⌧(S.b
j

).A
S

O-SETIsa({O1, . . . , On

}, O) O1 t · · · tO
n

v O

O-SETTot({O1, . . . , On

}, O) O v O1 t · · · tO
n

O-SETEx({O1, . . . , On

}, O) O1 t · · · tO
n

v O and O
i

v un

j=i+1¬Oj

for each i = 1, . . . , n

OBJ(R,O) O ⌘ A
R
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Future work

• Extend the expressivity of the captured ORM2 fragment

• A tighter integration of our plugin with NORMA (cooperation???)

• A higher-level plugin implementing the well-founded methodology 
for formal ontology design based on the work of Guarino et al

• (a complete version of our work can be found in a technical report)


