

Model Ontological Commitments Using ORM⁺ in T-Lex

Reporter: Damien Trog (Belgium) Authors: Yan Tang, Damien Trog ORM Workshop 2008 @ OTM (Mexico)

11/18/08 | pag. 1

Summary

- Background and Motivation
- ORM⁺
- ORM⁺ Tool
- Conclusion and Future Work
- Questions

STAR Lab

Background

- Why semantically grounded decision rules?
 - Decision support systems mainly contain *non-sharable* decision rules
 - Decision rules are rarely written in an agreed, formal way
 - Difficult to check the *redundancy* and *similarity* in the decision rule set
 - E.g. <u>if</u> (weather is bad) <u>then</u> (stay at home)
 <u>else if</u>(weather is good) <u>then</u> (go for a walk).
 - <u>if not</u> (it's sunny) <u>then</u> (stay at home)
 - else if (it's sunny) then (go for a walk).
- Use ontology to store the conceptual definition and decision items
 - E.g. "bad weather"
- Ontology
 - Explicit, sharable, formal, conceptual, stored in computers
 - DOGMA (Developing Ontology-Grounded Methods and Applications) Approach to ontology:
 - *Double articulation*: ontology = lexon base+ commitment (R. Meersman, 1999)

Background

- Lexon (conceptualization):
 - Lexon: plausible binary fact
 - E.g. <γ, driver, has, is issued to, drivers license>; < γ, driving experience, is of, has, driver>
- Commitment (axiomatization):
 - Describes particular application views of reality
 - the use of lexons
 - Provides multiple views on stored lexons
 - Needs to be expressed by commitment language
- ORM was adapted to model commitment
 - Definition of ontological commitment
 - ORM-ML
 - T-Lex

ORM approach to commitment and its problems

- ORM
 - Object Role Modeling, Terry Halpin, 1990's
 - Intended for modeling and querying DB at a conceptual level
 - Why ORM?
 - Semantically rich modeling language to model and visualize commitments for non-technical domain experts
 - Expressive capabilities in its graphical notation
 - Verbalization possibilities
 - ORM-ML for machines
 - Store ORM graphs
 - Can be mapped to OWL
 - Problems
 - ORM still lacks several logical operators and connectors for the decision semantics, e.g. implication
 - Difficulties to specify some logical operators, e.g. negation

11/18/08 | pag. 5

Negation in ORM and ORM

 Transferring the negation connective is possible in ORM

+-

- However, both positive and negative statuses of a type in the same schema.
- Extra analysis? Extra information?
- Negation in ORM+.

Conjunction in ORM⁺

 Not in ORM, only at the query/operational level

Implication in ORM and ORM+

- Problem
 - Monotonic
 - Only on one type
 - Impossible to have parameters (conditional statement)
 - Static

Vrije Universiteit Brussel STAR Lab

Sequence

- Example: "an order manager verifies a customer request AFTER the order manager receives the customer request"
- Application oriented.
- Related work:
 - business process modeling (Snoeck, 2003; OMG, 2006)
 - object modeling language (OMG, 2003)
 - software engineering (Taniguchi et al., 2005; van Hoeve et al., 2006)
- The core message: the issue of order

ORM⁺ Tool

Tool demonstration

Conclusion and Future Work

- Conclusion
 - Graphical representation based on ORM for decision tables
- Future work:
 - Modal logic
 - More operational/functional dynamic rules
 - Note: ORM+ will be called Semantic Decision
 Rule Language (SDRule-L) in the future.
 - ORM+ ML -> SDRule-ML

Questions?

• Thank you!