A closer look at the join-equality constraint

Gerhard Skagesteingerhard@ifi.uio.noRagnar Normannragnarn@ifi.uio.noDepartment of informaticsUniversity of Oslo

International Workshop on Fact-Oriented Modeling (ORM 2008) Monterrey, Mexico, November 12-14, 2008

A closer look at the join-equality constraint

Contents

- The join-equality constraint and the history of the "equivalence of path" constraint.
- An implementation of the join-equality constraint
- The 3NF/BCNF-problem and the join-equality constraint

A closer look at the join-equality constraint

The join-equality constraint and the history of the "equivalence of path" constraint.

A closer look at the join-equality constraint

An example: The ticket model

The redundancy can not be removed

The intriguing statement...

 Halpin, T., Morgan, T.: *Information Modeling and Relational Databases*, Second Edition, Morgan Kaufmann Publishers, San Francisco (2008)

page 405:

The ORM schema in Figure 10.6 includes an equality constraint between role triples, where the first triple involves a join on an objectified association. Role numbers are displayed here to clarify the constraint

A closer look at the join-equality constraint

How it all began...

- Spring 1986: Norwegian School of Management, teachers meeting in Ustaoset, Norway:
 - "The napkin discussion"
- April 1987
 ECODU-43
 Davos, Switzerland:

The "equivalence of path"constraint discussed – USA, Netherlands, Norway Slide no - 7

History of the equivalence of path constraint

- In the 90ties:
 - No formal graphical notation
 - No international publications?
 - Mentioned in a 1991 Norwegian text-book on data modeling
- Then the theory of join constraints is developed (Halpin 2002)
 - We realize that "equivalence of path" is a special case of the join-equality constraint

«Equivalence of path»-skranken

Denne typen skranke forekommer såvidt sjelden og er såvidt avansert at jeg har valgt å ikke oversette betegnelsen på den. «Equivalence of path»-skranken lar seg lettest forklare gjennom et eksempel, se figur 8.18.

Av modellen går det fram at en køyereservasjon gjelder e bestemt køye på en bestemt båt, samtidig som den samm køyereservasjon gjelder en bestemt avgang med en bestemt bå «Equivalence of path»-skranken uttrykker at køya og avgange må gjelde den samme båten! Dessverre finnes det ikke noe.. akseptert standard for å uttrykke «equivalence of path»-skranken grafisk i informasjonsmodellen.

Figur 8.18 Eksempel på «equivalence of path»

Slide no - 8

R-map grouping of the ticket model to 3NF

For any **Ticket**, the **location** of the **Seat** must be the same as the **location** of the **Event**.

A closer look at the join-equality constraint

The ticket model grouped to 1NF

Improved version of Fig. 3 in the paper

For any **Ticket**, **location1** must be the same as **location2**.

A closer look at the join-equality constraint

The ticket model grouped to 1NF

The transport company relational database in 3NF

Because of the partly information bearing identifiers of Departure and Berth, the shipnames appear in Ticket even in 3NF.

UNIVERSITY OF OSLO

A note on notation

- In the graphs, we have chosen to indicate the joining by connecting the lines on the outside of the join-constraint symbol, like this:
- A join-subset could then look like this:
- But as a consequence, joinuniqueness should have been drawn like this:

A closer look at the join-equality constraint

An implementation of the join-equality constraint

A closer look at the join-equality constraint

An implementation of the join-equality constraint

Since for all occurrences, **shipname1** is equal to **shipname2**, these two attributes may be replaced by a common attribute **shipname**. This implementation trick gives rise to overlapping foreign keys!

A closer look at the join-equality constraint

Overlapping foreign keys – a good thing?

Example from Chris Date: Relation Database, Writings 1985-1989, Part I, chapter 18 "Why overlapping keys should be treated with caution":

R-map grouping of the Chris Date model

The crucial question:

Is the join-equality constraint really *immutable*, making it is advisable to implement it by a common attribute? (I can't use the term "static constraint" here, since the ORM community has chosen to use that term for something else...)

A closer look at the join-equality constraint

The 3NF/BCNF-problem and the join-equality constraint

A closer look at the join-equality constraint

The 3NF/BCNF-problem

A relation in 3NF, but not in BCNF

CustomerRelation

customer department

For an employee being responsible for a Customer- Department relationship, he must work for that Department,

employee

and to work for a department,

the Employee must be responsible for a Customer-Department relationship for that Department.

A closer look at the join-equality constraint

The 3NF/BCNF-problem

For any CustomerRelation, department1 must be the same as department2.

For any **CustomerRelation**, **department1** must be the same as **department2**.

The model behind the 3NF/BCNF-example

Slide no - 25

Observation

• Whenever we have a relation that is in 3NF, but not in BCNF, there must be a join-equality constraint in the underlying model.

Proof

- In a relation satisfying BCNF, all non-trivial functional dependencies (FDs) X → A must have a superkey as its left hand side X.
- In 3NF we in addition allow all FDs $X \rightarrow A$ where A is a key attribute, i.e. $A \in K$ where K is a candidate key.

Proof (continued)

- Thus in any 3NF-relation *R* that is not in BCNF, there must be a nontrivial FD $X \rightarrow A$ (i.e. $A \notin X$) where X is not a superkey and $A \in K$, a candidate key. Furthermore the FD $K \rightarrow X$ cannot be trivial (this would make $K \setminus A$ a key, violating the minimality of the candidate key *K*).
- We then have the trivial FD $K \rightarrow A$ and the two non-trivial FDs $K \rightarrow X \rightarrow A$. In any ORM-diagram having R as (part of) its mapped result, these FDs will show up as a join-equality constraint between the two paths from K to A. \Box

Summary

- The join-equality constraint is rather common.
- The join-equality constraint is inherent in systems encompassing sets of reusable resources subject to reservations, logging or ticketing.
- The join-equality constraint may be implemented by replacing two attributes with one common attribute.
- This implementation may give rise to overlapping foreign keys

 overlapping that can be considered safe and sound if the
 join-equality-constraint is immutable.
- Whenever we have a relation that is in 3NF, but not in BCNF, there must be a join-equality constraint in the underlying model. Hence, a fact-oriented model without any join-equality constraints will group to BCNF when using the R-map procedure.

