CCL: A Lightweight ORM
Embedding in Clean

Bas Lijnse
Patrick van Bommel Rinus Plasmeijer

Radboud Universiteit Nijmegen 5%‘}
‘h"ING'

A little about me

Bas Lijnse
PhD Student (final year)

Radboud Universiteit Nijmegen 2%i

Radboud University
Nijmegen, The Netherlands

Functional Programming Group

Netherlands Defense Academy
Den Helder, The Netherlands

SEWACO/C4I1 Group

Plan for Today

ORM from my perspective

CCL Language

15 25

Discussion

45

My Day Job

Generally

Software Development Tools
— Methods, Languages, Libraries, Frameworks

Application Domains
— Crisis Management, Command and Control

Specifically
Functional Programming with Clean
Task-Oriented Programming with iTasks

Functional Programming
with
Clean

Pure lazy functional language
Developed at Radboud University (since 1984)
Similar to Haskell (and caml,lisp,scheme,f# etc)

General purpose language

— Based on Lamdba Calculus with graph reduction
semantics

— Statically Typed (with Hybrid Dynamic types)
— Higher order functions
— Algebraic Data Types (Burstall style)

Task-Oriented Programming
with
iTasks

Task-Oriented Programming

Task is primary building block

High-level basic tasks + composition operators
Define process and data together

Specify complete executable systems

A Task is a specified piece of work aiming to
produce a result of known type.

When executed tasks produce (temporary)
results which are observed in a controlled way.

) Itasks

dynamic workflow system

* Implementation of TOP

* Toolkit for building (prototypes of) TOP
applications

* Buzzwords
e Declaritive, Functional Programming in Clean
* Domain specific language / library in Clean
* Code generation, Generic Programming

Example Basic Task

incidentvb :: Task Incident
incidentvb = enterInformation "Enter..Incident" []

::Incident = {location :: Location
, kind :: IncidentKind
, time :: Time
,nrInjured :: Int

,description :: String

::IncidentKind H & C M O locahost 9% A
::Locat l on = { st1 & Enter information about Incident
Location™: Street™: Platolaan 210 ©
. : Place™: i €
derive class iTas imegen ©
Kind*: Accident v ©
Time™: 08:30:00 v ©
M injured™: 1 ~ @
Description™; Car crash ©
o Ok

Use of TOP & iTasks

* Rapid Prototyping
 “Agile” developmen

Running...
! i

Running...

localhost:8088/# e | (3§~ Google Q) (#] (B (=1

‘ INcID(’NEmM by itasks Welcome Root User <root> @ Log out

=} Calls and Messages Incidents &’ Contacts Incident 201201046

[]
e Task Analvsis Kitesurfer injured Scheveningen
Report of kitesurfer with possible injuries in water at Scheveningen beach
@ Situation o Plans | &° Contacts | [3F] Map Weather Log
© New~
e ——-s Coordinate incident

=] Verifieren melding
=] Contact maken (lucht)vaart
Situation

Coordinate the incident as you consider appropiate.
‘You may use the form below to keep everyone up to date on the situation

Title: Kitesurfer injured Scheveningen ©

Summary: Report of kitesurfer with possible injuries in water at Scf

Refinements Suggestions
Title Description Completed Uitkijk spoedbericht (PAN) uitzenden
Verifieren melding De binnengekomen m... False Voorwaarschuwing

Contact maken (lucht)... pogingen in het werk ... False

© Add predefined | & Add custom & Add all % Refresh

Types, Types and more Types

songSummary =
{ song id :: Int
, title String

, | @ppears_on

[(TrackNo, AlbumName)]

:: Album =

{ album id Int

, title String

, |songs [(TrackNo, SongName)]

T X

} I
viewSongSummary
viewSongSummary id
= loadSongSummaky id
>>= viewInformatilon “Song info:”

[]

\ >

SongIld -> Task SongSummary , - at10

o momaior il

:: NewSong =
{ title :: String
, artist :: String

appears on :: [(TrackNo,AlbumName)]

}
addSong ::
addSong

= enterInformation “New song..” []
>>= storeSong

Task NewSong

Slight variations needed for different tasks
Conceptually related, but compiler can not know

ORM Above All

Concept level Q
%
Type level f
/5

Value level

Rel DB PL Values Documents

ORM modeling
with
CCL

Concepts in CLean

Textual ORM language

Extension to Clean

Provides extra abstraction over Clean types
Lightweight ORM subset

Why CCL?

More concise specification of conceptually
related Clean types

Make conceptual relations explicit
— Enable more code generation

— Enable more system visualization
Drop in language extension (no extra tools)

Mix conceptual specification with task
specification

concept module Music

$9

SS9
$9
$9
$9
$9

Album
AudioBook
Author
MusicAlbum
Artist
sSong

[A

[

$S
$S
$S
$S
$S
SS9

Name = String
SongId = Int
SongTitle =
AlbumId = Int
AlbumTitle =
ArtistId = Int

String

String

ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik
ik

album id
album title
album year
song 1id
title
duration
songs
performed by
tags
artist id
artist name
author name

author

<<L
<<
<<
<<
<<
<<

Song 1is << TrackNo on MusicAlbum >>

<<
<<
<<
<<
<<
<<

''"Album >> has << AlbumId >>
'!Album >> has AlbumTitle
Album >> 1is published in Year
!''Song >> has << SongId >>
!Song has >> SongTitle

Song >> has Duration

!Song is performed by Artist >>
Song 1s categorized by Tag >>
!''"Artist >> has << ArtistId >>
!Artist >> has Name

'Author >> has AuthorName
'AudioBook is written by Author >>

ring

~— - — - —

Song Artist AN
(Songld) | (Attistld) L] Name
... is performed by ... o .. has ... SR,
[TrackNo | ———— Year

- - -

JE—

I ——— Tag |

~— - —

... is categorized by ...

——— e - ——

AudioBook -- f AuthorName |

—— e ——

... is written by ... has

song =

{song 1d :: SongId
,title :: SongTitle
,duration :: Maybe Duration
,songs :: [(TrackNo, String)]
yperformed by :: [ArtistId]
,tags :: [Tag]
}

Artist =
{performed by :: [SongId]
,artist id :: ArtistId
,artist name :: Name
}

Album =
{album id :: AlbumId
yalbum title :: AlbumTitle

,album year :: Maybe Year

}

CCL Language Constructs

Fact Types Uniqueness Constraints
Entity Types Total Roles
Value Types Primary Roles

Sub Types Fact Container Types

CCL Tools

Clean
Compiler

